Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.981
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1337995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405155

RESUMO

Vascular calcification is a common accompanying pathological change in many chronic diseases, which is caused by calcium deposition in the blood vessel wall and leads to abnormal blood vessel function. With the progress of medical technology, the diagnosis rate of vascular calcification has explosively increased. However, due to its mechanism's complexity, no effective drug can relieve or even reverse vascular calcification. Irisin is a myogenic cytokine regulating adipose tissue browning, energy metabolism, glucose metabolism, and other physiological processes. Previous studies have shown that irisin could serve as a predictor for vascular calcification, and protect against hypertension, diabetes, chronic kidney disease, and other risk factors for vascular calcification. In terms of mechanism, it improves vascular endothelial dysfunction and phenotypic transformation of vascular smooth muscle cells. All the above evidence suggests that irisin plays a predictive and protective role in vascular calcification. In this review, we summarize the association of irisin to the related risk factors for vascular calcification and mainly explore the role of irisin in vascular calcification.


Assuntos
Fibronectinas , Hipertensão , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Fibronectinas/fisiologia , Fatores de Risco
2.
Mol Biol Cell ; 35(2): ar22, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088893

RESUMO

Macrophages are indispensable for proper immune surveillance and inflammatory regulation. They also exhibit dramatic phenotypic plasticity and are highly responsive to their local microenvironment, which includes the extracellular matrix (ECM). This work demonstrates that two fibrous ECM glycoproteins, fibronectin (FN) and laminin (LAM), elicit distinct morphological and migratory responses from macrophages in two-dimensional environments. LAM 111 inhibits macrophage cell spreading, but drives them to migrate rapidly and less persistently compared with cells on FN. Differential integrin engagement and ROCK/myosin II organization helps explain why macrophages alter their morphology and migration character on these two ECM components. This study also demonstrates that LAM 111 exerts a suppressive effect toward FN, as macrophages plated on a LAM/FN mixture adopt a morphology and migratory character almost identical to LAM alone. This suggests that distinct responses can be initiated downstream of receptor-ECM engagement, and that one component of the microenvironment may affect the cell's ability to sense another. Overall, macrophages appear intrinsically poised to rapidly switch between distinct migratory characters based on their ECM environments. The role of ECM composition in dictating motile and inflammatory responses in three-dimensional and in vivo contexts warrants further study.


Assuntos
Matriz Extracelular , Fibronectinas , Fibronectinas/fisiologia , Movimento Celular , Matriz Extracelular/fisiologia , Proteínas do Citoesqueleto , Laminina , Miosina Tipo II , Macrófagos , Adesão Celular
3.
FASEB J ; 37(3): e22823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809668

RESUMO

The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.


Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Fibronectinas/fisiologia , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Anticorpos Monoclonais , Adesão Celular/fisiologia , Neuritos
4.
J Therm Biol ; 110: 103344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462879

RESUMO

Current labor demographics are changing, with the number of older adults increasingly engaged in physically demanding occupations expected to continually rise, which are often performed in the heat. Given an age-related decline in whole-body heat loss, older adults are at an elevated risk of developing heat injuries that may be exacerbated by hypertension (HTN) and type 2 diabetes (T2D). Elevated irisin production may play a role in mitigating the excess oxidative stress and acute inflammation associated with physically demanding work in the heat. However, the effects of HTN and T2D on this response remain unclear. Therefore, we evaluated serum irisin before and after 3-h of moderate intensity exercise (metabolic rate: 200 W/m2) and at the end of 60-min of post-exercise recovery in a temperate (wet-bulb globe temperature (WBGT) 16 °C) and high-heat stress (WBGT 32 °C) environment in 12 healthy older men (mean ± SD; 59 ± 4 years), 10 men with HTN (60 ± 4 years), and 9 men with T2D (60 ± 5 years). Core temperature (Tco) was measured continuously. In the heat, total exercise duration was significantly lower in older men with HTN and T2D (both, p ≤ 0.049). Despite Tco not being different between groups, Tco was higher in the hot compared to the temperate condition for all groups (p < 0.001). Similarly, serum irisin concentrations did not differ between groups under either condition but were elevated relative to the temperate condition during post-exercise and end-recovery in the heat (+93.9 pg/mL SEM 26 and + 70.5 pg/mL SEM 38 respectively; both p ≤ 0.014). Thus, our findings indicate similar irisin responses in HTN and T2D compared to healthy, age-matched controls, despite reduced exercise tolerance during prolonged exercise in the heat. Therefore, older workers with HTN and T2D may exhibit greater cellular stress during prolonged exercise in the heat, underlying greater vulnerability to heat-induced cellular injury.


Assuntos
Diabetes Mellitus Tipo 2 , Fibronectinas , Transtornos de Estresse por Calor , Hipertensão , Idoso , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Exercício Físico/efeitos adversos , Exercício Físico/fisiologia , Tolerância ao Exercício/fisiologia , Fibronectinas/sangue , Fibronectinas/fisiologia , Hipertensão/sangue , Hipertensão/complicações , Hipertensão/fisiopatologia , Transtornos de Estresse por Calor/sangue , Transtornos de Estresse por Calor/complicações , Transtornos de Estresse por Calor/fisiopatologia , Pessoa de Meia-Idade , Envelhecimento/fisiologia
5.
Exerc Sport Sci Rev ; 50(2): 89-96, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961755

RESUMO

Autophagic dysregulation contributes to liver diseases. Although some investigations have examined the effects of endurance and resistance exercise on autophagy activation, potential myokines responsible for skeletal muscle-liver crosstalk are still unknown. Based on experimental studies and bioinformatics, we hypothesized that interleukin 6 (IL-6) and irisin might be key players in the contraction-induced release of molecules that regulate liver autophagic responses.


Assuntos
Autofagia , Exercício Físico , Fibronectinas , Interleucina-6 , Fígado , Fibronectinas/fisiologia , Humanos , Interleucina-6/fisiologia , Músculo Esquelético
6.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768846

RESUMO

The diagnosis of endometriosis and fertility disorders is difficult; therefore, it is necessary to look for reliable biomarkers. Analysis of the molecular status of fibronectin as a key player in repair and wound healing processes, as well as in coagulation and fibrinolysis pathways, is justified. ELISA and SDS-agarose immunoblotting were applied to determine the fibronectin concentration and presence and occurrence of soluble FN-fibrin complexes in the blood plasma of women with endometriosis (n = 38), fertility disorders (n = 28) and the healthy group (n = 25). The concentration of fibronectin in the blood plasma of women with endometriosis (292.61 ± 96.17 mg/L) and fertility disorders (287.53 ± 122.68 mg/L) was significantly higher than in the normal group (226.55 ± 91.98 mg/L). The presence of FN-fibrin complexes of 750, 1000, 1300, 1600 and 1900 kDa in the plasma of women with endometriosis and fertility disorders was shown. The presence of FN-fibrin complexes with a molecular mass of more than 1300 kDa in women with endometriosis and infertility and the complete absence of these complexes in healthy women may indicate an increased and chronic activation of coagulation mechanisms in these patients. The presence of complexes of high molecular mass may be one of the biomarkers of fertility disorders in women.


Assuntos
Endometriose/metabolismo , Fibronectinas/metabolismo , Infertilidade Feminina/metabolismo , Adulto , Biomarcadores , Endometriose/diagnóstico , Endometriose/fisiopatologia , Feminino , Fibrina/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Fibronectinas/análise , Fibronectinas/sangue , Fibronectinas/fisiologia , Humanos , Infertilidade Feminina/fisiopatologia , Pessoa de Meia-Idade , Plasma/química
7.
Shock ; 56(6): 1009-1018, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779800

RESUMO

ABSTRACT: Septic cardiac dysfunction remains a clinical problem due to its high morbidity and mortality. Uncontrolled cell death and excessive inflammatory response are closely related to sepsis-induced cardiac dysfunction. Irisin has been found to play cardioprotective roles in sepsis. However, there is enough uncertainty in the mechanism of irisin-mediated cardioprotection. We hypothesized that irisin may ameliorate myocardial dysfunction via reducing cardiac apoptosis, pyroptosis, and inflammation during LPS-induced sepsis. Mice were subjected to LPS with or without irisin treatment. After stimuli of LPS, the function of myocardium was distinctly impaired, which was closely related to increased level of apoptosis (decreased expression of Bcl-2 and elevated expression of Caspase-3 and Bax), pyroptosis (increased expression of Caspase1, NLR family pyrin domain containing 3 (NLRP3), and gasdermin D) and inflammatory mediators (increased level of IL-1ß, TNF-α, and IL-6). This process is consistent with increased toll-like receptor 4 (TLR4)/nuclear factor-kappa B signal, apoptotic signal, and NLRP3-mediated pyroptotic signal. Activation of apoptosis and pyroptosis enhanced the expression of proinflammatory cytokines and further exacerbated septic myocardial damage. However, irisin can inhibit the expression of TLR4 and its downstream signaling molecules and also lower the level of apoptosis and pyroptosis. Besides, similar results were also found in vitro model of LPS-induced H9c2 cardiomyocyte injury. In general, irisin suppressed inflammation, apoptosis, and pyroptosis by blocking the TLR4 and NLRP3 inflammasome signalings to mitigate myocardial dysfunction in sepsis.


Assuntos
Apoptose , Fibronectinas/fisiologia , Cardiopatias/etiologia , Inflamação , Piroptose , Sepse/complicações , Animais , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
J Am Heart Assoc ; 10(20): e022453, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34622672

RESUMO

Irisin, a novel hormone like polypeptide, is cleaved and secreted by an unknown protease from a membrane-spanning protein, FNDC5 (fibronectin type III domain-containing protein 5). The current knowledge on the biological functions of irisin includes browning white adipose tissue, regulating insulin use, and anti-inflammatory and antioxidative properties. Dysfunction of irisin has shown to be involved in cardiovascular diseases such as hypertension, coronary artery disease, myocardial infarction, and myocardial ischemia-reperfusion injury. Moreover, irisin gene variants are also associated with cardiovascular diseases. In this review, we discuss the current knowledge on irisin-mediated regulatory mechanisms and their roles in the pathogenesis of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Fibronectinas , Doenças Cardiovasculares/patologia , Fibronectinas/fisiologia , Humanos
9.
Mol Neurobiol ; 58(11): 5890-5906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415486

RESUMO

Alzheimer's disease (AD) is associated with a very large burden on global healthcare systems. Thus, it is imperative to find effective treatments of the disease. One feature of AD is the accumulation of neurotoxic ß-amyloid peptide (Aß). Aß induces multiple pathological processes that are deleterious to nerve cells. Despite the development of medications that target the reduction of Aß to treat AD, none has proven to be effective to date. Non-pharmacological interventions, such as physical exercise, are also being studied. The benefits of exercise on AD are widely recognized. Experimental and clinical studies have been performed to verify the role that exercise plays in reducing Aß deposition to alleviate AD. This paper reviewed the various mechanisms involved in the exercise-induced reduction of Aß, including the regulation of amyloid precursor protein cleaved proteases, the glymphatic system, brain-blood transport proteins, degrading enzymes and autophagy, which is beneficial to promote exercise therapy as a means of prevention and treatment of AD and indicates that exercise may provide new therapeutic targets for the treatment of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Exercício Físico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Animais , Autofagia , Barreira Hematoencefálica , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Exercício Físico/fisiologia , Fibronectinas/fisiologia , Sistema Glinfático , Humanos , Microdomínios da Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/prevenção & controle , Doenças Neuroinflamatórias/fisiopatologia , Peptídeo Hidrolases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Condicionamento Físico Animal , Proteólise , Transdução de Sinais/fisiologia , Sirtuína 1/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
10.
FEBS Open Bio ; 11(11): 2977-2987, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431237

RESUMO

B7 homolog 3 (B7-H3) plays an important role in tumor biology, but the molecular mechanism underlying the role of B7-H3 in tumor metastasis remains unclear. In this article, our analysis of The Cancer Genome Atlas database suggested that B7-H3 expression is associated with poor prognosis of patients with clear cell renal cell carcinoma (ccRCC). B7-H3 knockdown affected the expression of metastasis-related genes and significantly suppressed the metastasis of ccRCC cells, but it had no significant effect on the proliferation of ccRCC cells. Database analysis revealed a strong positive correlation between B7-H3 and fibronectin (FN) in ccRCC cells, and further study also confirmed that FN interacts with B7-H3. Silencing FN expression inhibited the migration and invasion of ccRCC cells, whereas exogenous FN promoted the migration and invasion of ccRCC cells, which was accompanied by activation of kinases [namely, phosphorylated (p)-phosphoinositide 3-kinase, p-protein kinase B, p-p38 and p-extracellular regulated protein kinase]. B7-H3 knockdown abolished the prometastatic effect of FN. In conclusion, our data suggest that B7-H3 binds to exogenous FN and promotes the metastasis of ccRCC cells.


Assuntos
Antígenos B7/metabolismo , Carcinoma de Células Renais/genética , Fibronectinas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Fibronectinas/genética , Fibronectinas/fisiologia , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/fisiopatologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
11.
Commun Biol ; 4(1): 808, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183779

RESUMO

Collective migration of epithelial cells is a fundamental process in multicellular pattern formation. As they expand their territory, cells are exposed to various physical forces generated by cell-cell interactions and the surrounding microenvironment. While the physical stress applied by neighbouring cells has been well studied, little is known about how the niches that surround cells are spatio-temporally remodelled to regulate collective cell migration and pattern formation. Here, we analysed how the spatio-temporally remodelled extracellular matrix (ECM) alters the resistance force exerted on cells so that the cells can expand their territory. Multiple microfabrication techniques, optical tweezers, as well as mathematical models were employed to prove the simultaneous construction and breakage of ECM during cellular movement, and to show that this modification of the surrounding environment can guide cellular movement. Furthermore, by artificially remodelling the microenvironment, we showed that the directionality of collective cell migration, as well as the three-dimensional branch pattern formation of lung epithelial cells, can be controlled. Our results thus confirm that active remodelling of cellular microenvironment modulates the physical forces exerted on cells by the ECM, which contributes to the directionality of collective cell migration and consequently, pattern formation.


Assuntos
Movimento Celular/fisiologia , Matriz Extracelular/fisiologia , Comunicação Celular , Células Cultivadas , Fibronectinas/fisiologia , Humanos
12.
PLoS One ; 16(6): e0248256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106923

RESUMO

Assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils is a critical step during embryonic development and wound healing; misregulation of FN fibril assembly has been implicated in many diseases, including fibrotic diseases and cancer. We have previously developed a computational model of FN fibril assembly that recapitulates the morphometry and mechanics of cell-derived FN fibrils. Here we use this model to probe two important questions: how is FN fibril formation affected by the contractile phenotype of the cell, and how is FN fibril formation affected by the stiffness of the surrounding tissue? We show that FN fibril formation depends strongly on the contractile phenotype of the cell, but only weakly on in vitro substrate stiffness, which is an analog for in vivo tissue stiffness. These results are consistent with previous experimental data and provide a better insight into conditions that promote FN fibril assembly. We have also investigated two distinct phenotypes of FN fibrils that we have previously identified; we show that the ratio of the two phenotypes depends on both substrate stiffness and contractile phenotype, with intermediate contractility and high substrate stiffness creating an optimal condition for stably stretched fibrils. Finally, we have investigated how re-stretch of a fibril affects cellular response. We probed how the contractile phenotype of the re-stretching cell affects the mechanics of the fibril; results indicate that the number of myosin motors only weakly affects the cellular response, but increasing actin velocity results in a decrease in the apparent stiffness of the fibril and a decrease in the stably-applied force to the fibril. Taken together, these results give novel insights into the combinatorial effects of substrate stiffness and cell contractility on FN fibril assembly.


Assuntos
Actinas/química , Fibronectinas/ultraestrutura , Miofibrilas/ultraestrutura , Simulação por Computador , Elasticidade , Fibronectinas/química , Fibronectinas/fisiologia , Contração Muscular , Miofibrilas/química , Miofibrilas/fisiologia , Miosinas/metabolismo
13.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33881516

RESUMO

Plasma fibronectin 1 (FN1) levels are elevated in individuals with pre-eclampsia (PE), which may be applied as a possible b marker for vascular endothelial injury during PE. In the present study, the possible role of FN1 in the pathogenesis of PE and regulation of apoptosis and autophagy in vascular endothelial cells was explored. Plasma FN1 levels in 80 patients with PE and 40 healthy pregnant individuals were measured using ELISA to verify its relationship with the severity of PE. pcDNA3.1-FN1 or FN1-small interfering (si) RNA was used to manipulate the expression of FN1 in human umbilical vein endothelial cells (HUVECs) to assess the effects of FN1 on cell apoptosis, autophagy, and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. It was found that upregulation of FN1 promoted apoptosis and autophagy, in addition to significantly inhibiting the activation of AKT and mTOR in HUVECs. By contrast, downregulation of FN1 expression inhibited cell apoptosis and autophagy, but increased AKT and mTOR phosphorylation in HUVECs that were cultured in serum samples obtained from patients with PE. Rescue experiments found that the PI3K/AKT inhibitor LY294002 reversed the effects of FN1-siRNA on apoptosis and autophagy in HUVECs cultured in serum from patients with PE. Therefore, data from the present study suggest that FN1 participates in the pathogenesis of PE by promoting apoptosis and autophagy in vascular endothelial cells, which is associated with the PI3K/AKT/mTOR signaling pathway.


Assuntos
Células Endoteliais/patologia , Fibronectinas/fisiologia , Pré-Eclâmpsia/etiologia , Adulto , Apoptose , Autofagia , Estudos de Casos e Controles , Cromonas/farmacologia , Células Endoteliais/metabolismo , Feminino , Fibronectinas/biossíntese , Fibronectinas/sangue , Fibronectinas/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Células Endoteliais da Veia Umbilical Humana , Humanos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
14.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672171

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with insulin resistance and hyperglycemia. Chronic exposure to a T2DM microenvironment with hyperglycemia, hyperinsulinemia, oxidative stress and increased levels of proinflammatory mediators, has negative consequences to the cardiovascular system and mental health. Therefore, atherosclerotic cardiovascular diseases (CVD) and mental health issues have been strongly associated with T2DM. Lifestyle modifications, including physical exercise training, are necessary to prevent T2DM development and its associated complications. It is widely known that the regular practice of exercise provides several physiological benefits to subjects with T2DM, such as managing glycemic and blood pressure levels. Different types of exercise, from aerobic to resistance training, are effective to improve mental health and cognitive function in T2DM. Irisin is a myokine produced in response to exercise, which has been pointed as a relevant mechanism of action to explain the benefits of exercise on cardiovascular and mental health in T2DM patients. Here, we review emerging clinical and experimental evidence about exercise-linked irisin consequences to cardiovascular and mental health in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Exercício Físico/fisiologia , Fibronectinas/fisiologia , Adipocinas/metabolismo , Ansiedade/etiologia , Ansiedade/prevenção & controle , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Cognição/fisiologia , Depressão/etiologia , Depressão/prevenção & controle , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/psicologia , Humanos , Memória/fisiologia , Saúde Mental
15.
Hum Cell ; 34(3): 847-861, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683654

RESUMO

Fibronectin type III domain-containing-5 (Fndc5) is a trans-membrane protein which is involved in a variety of cellular events including neural differentiation of mouse embryonic stem cells (mESCs) as its knockdown and overexpression diminishes and facilitates this process, respectively. However, downstream targets of Fndc5 in neurogenesis are still unclear. Neurotrophins including NGF, BDNF, NT-3, and NT-4 are the primary regulators of neuronal survival, growth, differentiation, and repair. These biomolecules exert their actions through binding to two different receptor families, Trk and p75NTR. In this study, considering the fact that neurotrophins and their receptors play crucial roles in neural differentiation of ESCs, we sought to evaluate whether knockdown of Fndc5 decreased neural differentiation of mESCs by affecting the neurotrophins and their receptors expression. Results showed that at neural progenitor stage, the mRNA and protein levels of BDNF, Trk, and p75NTR receptors decreased following the Fndc5 knockdown. In mature neural cells, still, the expression of Trk and p75NTR receptors at mRNA and protein levels and BDNF and NGF expression only at protein levels showed a significant decrease in Fndc5 knockdown cells compared to control groups. Taken together, our results suggest that decreased efficiency of neural differentiation following the reduction of Fndc5 expression could be attributed to decreased levels of NGF and BDNF proteins in addition to their cognate receptors.


Assuntos
Diferenciação Celular/genética , Fibronectinas/fisiologia , Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Murinas/fisiologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurogênese/genética , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo
16.
Biomolecules ; 11(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671882

RESUMO

Incretins are gut hormones that potentiate glucose-stimulated insulin secretion (GSIS) after meals. Glucagon-like peptide-1 (GLP-1) is the most investigated incretin hormone, synthesized mainly by L cells in the lower gut tract. GLP-1 promotes ß-cell function and survival and exerts beneficial effects in different organs and tissues. Irisin, a myokine released in response to a high-fat diet and exercise, enhances GSIS. Similar to GLP-1, irisin augments insulin biosynthesis and promotes accrual of ß-cell functional mass. In addition, irisin and GLP-1 share comparable pleiotropic effects and activate similar intracellular pathways. The insulinotropic and extra-pancreatic effects of GLP-1 are reduced in type 2 diabetes (T2D) patients but preserved at pharmacological doses. GLP-1 receptor agonists (GLP-1RAs) are therefore among the most widely used antidiabetes drugs, also considered for their cardiovascular benefits and ability to promote weight loss. Irisin levels are lower in T2D patients, and in diabetic and/or obese animal models irisin administration improves glycemic control and promotes weight loss. Interestingly, recent evidence suggests that both GLP-1 and irisin are also synthesized within the pancreatic islets, in α- and ß-cells, respectively. This review aims to describe the similarities between GLP-1 and irisin and to propose a new potential axis-involving the gut, muscle, and endocrine pancreas that controls energy homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Fibronectinas/fisiologia , Incretinas/fisiologia , Obesidade/fisiopatologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/patologia
17.
Mol Biol Cell ; 32(8): 739-752, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625865

RESUMO

The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-ß1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell-FN interactions.


Assuntos
Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Animais , Sítios de Ligação , Técnicas de Cultura de Células , Citoesqueleto/metabolismo , Matriz Extracelular/fisiologia , Fibroblastos/metabolismo , Fibronectinas/fisiologia , Humanos , Camundongos , Células NIH 3T3 , Ligação Proteica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
18.
FASEB J ; 35(3): e21369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33554392

RESUMO

Transmembrane 4 L six family member 5 (TM4SF5) translocates intracellularly and promotes cell migration, but how subcellular TM4SF5 traffic is regulated to guide cellular migration is unknown. We investigated the influences of the extracellular environment and intracellular signaling on the TM4SF5 traffic with regard to migration directionality. Cell adhesion to fibronectin (FN) but not poly-l-lysine enhanced the traffic velocity and straightness of the TM4SF5WT (but not palmitoylation-deficient mutant TM4SF5Pal- ) toward the leading edges, depending on tubulin acetylation. Acetylated-microtubules in SLAC2B-positive cells reached mostly the juxtanuclear regions, but reached-out toward the leading edges upon SLAC2B suppression. TM4SF5 expression caused SLAC2B not to be localized at the leading edges. TM4SF5 colocalization with HDAC6 depended on paxillin expression. The trimeric complex consisting of TM4SF5, HDAC6, and SLAC2B might, thus, be enriched at the perinuclear cytosols toward the leading edges. More TM4SF5WT translocation to the leading edges was possible when acetylated-microtubules reached the frontal edges following HDAC6 inhibition by paxillin presumably at new cell-FN adhesions, leading to persistent cell migration. Collectively, this study revealed that cell-FN adhesion and microtubule acetylation could control intracellular traffic of TM4SF5 vesicles to the leading edges via coordinated actions of paxillin, SLAC2B, and HDAC6, leading to TM4SF5-dependent cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Membrana Celular/metabolismo , Matriz Extracelular/fisiologia , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Acetilação , Adesão Celular , Movimento Celular , Fibronectinas/fisiologia , Células Hep G2 , Desacetilase 6 de Histona/fisiologia , Humanos , Paxilina/fisiologia , Transporte Proteico
19.
J Biol Chem ; 296: 100360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539924

RESUMO

Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis.


Assuntos
Fibronectinas/metabolismo , Fibronectinas/fisiologia , Ácido Peroxinitroso/química , Aterosclerose/metabolismo , Células Cultivadas , Cromatografia em Gel/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Fibronectinas/química , Humanos , Inflamação/metabolismo , Oxidantes/metabolismo , Oxirredução , Ácido Peroxinitroso/farmacologia , Domínios Proteicos/fisiologia , Triptofano/análogos & derivados , Triptofano/química , Tirosina/análogos & derivados , Tirosina/química
20.
Biochem Soc Trans ; 49(1): 477-484, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33449117

RESUMO

The myokine Irisin, produced during physical exercise, has an anabolic effect on bone, both in vitro and in vivo. Very recently, using a controlled in vitro 3D cell model to mimic the bone microenvironment aboard the International Space Station, it has been shown that Irisin treatment in microgravity prevents the down-regulation of the transcription factors Atf4, Runx2 and Osterix, as well as Collagen I and Osteoprotegerin proteins, crucial for osteoblast differentiation in physiologic conditions. Irisin action has also been investigated in human subjects, in which it correlates with bone health status, supporting its physiological importance also in human bone, both in healthy subjects and in patients suffering from diseases related to bone metabolism, such as hyperparathyroidism and type 1 diabetes. Low levels of circulating Irisin have been found in post-menopausal women affected by hyperparathyroidism. Furthermore, Irisin is positively correlated with bone strength in athletes and bone mineral density in football players. Moreover, in healthy children, Irisin is positively associated with bone mineral status and in children with type 1 diabetes, Irisin is positively correlated with improved glycemic control and skeletal health. In this review, we will focus on recent findings about Irisin action on microgravity induced bone loss and on osteocyte activity and survival through its αV/ß5 integrin receptor.


Assuntos
Osso e Ossos/efeitos dos fármacos , Fibronectinas/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Osso e Ossos/citologia , Diferenciação Celular/efeitos dos fármacos , Criança , Feminino , Fibronectinas/metabolismo , Fibronectinas/fisiologia , Humanos , Pessoa de Meia-Idade , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...